Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Res ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38458494

RESUMO

Neurodegenerative diseases (ND) affect distinct populations of neurons and manifest various clinical and pathological symptoms. A subset of ND prognoses has been linked to vascular risk factors. Consequently, the current study investigated retinal vascular abnormalities in a murine model of Lafora neurodegenerative disease (LD), a fatal and genetic form of progressive myoclonus epilepsy that affects children. Here, arterial rigidity was evaluated by measuring pulse wave velocity and vasculature deformations in the retina. Our findings in the LD mouse model indicate altered pulse wave velocity, retinal vascular thinning, and convoluted retinal arteries.

2.
Mycoses ; 67(2): e13699, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38366288

RESUMO

BACKGROUND: Superficial mycoses are fungal infections limited to the outermost layers of the skin and its appendages. The chief causative agents of these mycoses are dermatophytes and yeasts. The diagnosis of dermatophytosis can be made by direct mycological examination with potassium hydroxide (10%-30%) of biological material obtained from patients with suspected mycosis, providing results more rapid than fungal cultures, which may take days or weeks. This information, together with clinical history and laboratory diagnosis, ensures that the appropriate treatment is initiated promptly. However, false negative results are obtained in 5%-15%, by conventional methods of diagnosis of dermatophytosis. OBJECTIVES: To study the metabolic profiles of the commonly occurring dermatophytes by NMR spectroscopy. PATIENTS/MATERIALS: We have used 1D and 2D Nuclear Magnetic Resonance (NMR) experiments along with Human Metabolome Database (HMDB) and Chenomx database search for identification of primary metabolites in the methanol extract of two fungal species: Trichophyton mentagrophyte (T. mentagrophyte) and Trichophyton rubrum (T. rubrum). Both standard strains and representative number of clinical isolates of these two species were investigated. Further, metabolic profiles obtained were analysed using multivariate analysis. RESULTS: We have identified 23 metabolites in the T. mentagrophyte and another 23 metabolites in T. rubrum. Many important metabolites like trehalose, proline, mannitol, acetate, GABA and several other amino acids were detected, which provide the necessary components for fungal growth and metabolism. Altered metabolites were defined between Trichophyton mentagrophyte and T. rubrum strains. CONCLUSION: We have detected many metabolites in the two fungal species T. mentagrophyte and T. rubrum by using NMR spectroscopy. NMR spectroscopy provides a holistic snapshot of the metabolome of an organism. Key metabolic differences were identified between the two fungal strains. We need to perform more studies on metabolite profiling of the samples from these species for their rapid diagnosis and prompt treatment.


Assuntos
Arthrodermataceae , Dermatomicoses , Tinha , Humanos , Trichophyton , Dermatomicoses/microbiologia , Tinha/diagnóstico , Tinha/microbiologia , Espectroscopia de Ressonância Magnética
3.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38287677

RESUMO

Lafora disease (LD) is a life-threatening autosomal recessive and progressive neurodegenerative disorder that primarily affects adolescents, resulting in mortality within a decade of onset. The symptoms of LD include epileptic seizures, ataxia, dementia, and psychosis. The underlying pathology involves the presence of abnormal glycogen inclusions in neurons and other tissues, which may contribute to neurodegeneration. LD is caused by loss-of-function mutations in either the EPM2A gene or the NHLRC1 gene. These two genes, respectively, code for laforin phosphatase and malin ubiquitin ligase, and are thought to function, as a functional complex, in diverse cellular pathways. One of the major pathways affected in LD is glycogen metabolism; defects here lead to abnormally higher levels of glycogen and its hyperphosphorylation and aggregation, resulting in the formation of Lafora inclusion bodies. Currently, there is no effective therapy for LD. Studies, particularly from animal models, provide distinct insights into the fundamental mechanisms of diseases and potential avenues for therapeutic interventions. The purpose of this review is to present a comprehensive overview of our current knowledge regarding the disease, its genetics, the animal models that have been developed, and the therapeutic strategies that are being developed based on an understanding of the disease mechanism.


Assuntos
Doença de Lafora , Animais , Doença de Lafora/diagnóstico , Doença de Lafora/genética , Doença de Lafora/terapia , Proteínas Tirosina Fosfatases não Receptoras/genética , Neurônios/metabolismo , Mutação , Glicogênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
J Mol Recognit ; 37(1): e3066, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916582

RESUMO

Hepatitis C virus infection causes chronic diseases such as cirrhosis and hepatocellular carcinoma. Metabolomics research has been shown to be linked to pathophysiologic pathways in liver illnesses. The aim of this study was to investigate the serum metabolic profile of patients with chronic hepatitis C (CHC) infection and to identify underlying mechanisms as well as potential biomarkers associated with the disease. Nuclear magnetic resonance (NMR) was used to evaluate the sera of 83 patients with CHC virus and 52 healthy control volunteers (NMR). Then, multivariate statistical analysis was used to find distinguishing metabolites between the two groups. Sixteen out of 40 metabolites including include 3-HB, betaine, carnitine, creatinine, fucose, glutamine, glycerol, isopropanol, lysine, mannose, methanol, methionine, ornithine, proline, serine, and valine-were shown to be significantly different between the CHC and normal control (NC) groups (variable importance in projection >1 and p < 0.05). All the metabolic perturbations in this disease are associated with pathways of Glycine, serine, and threonine metabolism, glycerolipid metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, alanine, aspartate, and glutamate metabolism. Multivariate statistical analysis constructed using these expressed metabolites showed CHC patients can be discriminated from NCs with high sensitivity (90%) and specificity (99%). The metabolomics approach may expand the diagnostic armamentarium for patients with CHC while contributing to a comprehensive understanding of disease mechanisms.


Assuntos
Hepatite C Crônica , Humanos , Hepatite C Crônica/diagnóstico , Metaboloma , Metionina , Prolina , Serina
5.
Metab Brain Dis ; 37(3): 773-785, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35029797

RESUMO

We report the potential role of 1H Nuclear Magnetic Resonance (NMR) based metabolomics in tuberculous meningitis (TBM). We also correlate the significant metabolites with clinical-radiological parameters. Forty-three patients with TBM were included, and their severity of meningitis was graded as stages I to III, and patients with positive Mycobacterium tuberculosis or its nucleic acid was considered as definite TBM. 1H NMR-based metabolomic study was performed on (CSF) samples, and the significant metabolites compared to healthy controls were identified. Outcome at three months was defined as death, poor and good based on the modified Rankin Scale. These metabolites were compared between definite and probable groups of TBM, and also correlated with MRI findings. About 11 metabolites were found to be significant for distinguishing TBM from the controls. In TBM, lactate, glutamate, alanine, arginine, 2-hydroxyisobutyrate, formate, and cis-aconitate were upregulated, and glucose, fructose, glutamine, and myo-inositol were downregulated compared to the controls. For differentiating TBM from the controls, the AUC of the ROC curve generated using these significant metabolites was 0.99, with a 95% confidence interval from 0.96 to 1, demonstrating that these metabolites were able to classify cases with good sensitivity and specificity. Lactate concentration in CSF correlated with hemoglobin, CSF glucose, and infarction. The outcome did not correlate with metabolomics parameters. NMR-based CSF metabolomics have a potential role in differentiating TBM from the controls.


Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Metabolômica , Tuberculose Meníngea/diagnóstico por imagem , Tuberculose Meníngea/microbiologia
6.
Analyst ; 146(21): 6582-6591, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34586127

RESUMO

CDCl3 is the most frequently used solvent for the NMR investigation of organic compounds. Busy chemistry labs need to investigate hundreds of compounds daily. While 1H NMR investigation takes a couple of minutes, recording 13C NMR spectra necessitates hours of signal averaging due to the low abundance and low sensitivity of 13C nuclei. The longer acquisition time for 13C NMR results in a loss of precious spectrometer time in a shared multi-user environment. A regular 5 mm o.d. NMR tube is the most commonly used tube for NMR in organic chemistry labs and is also the cheapest option. We show that for analytes soluble in the CDCl3 solvent using a regular 5 mm o.d. NMR tube, the speed of 13C observation can be enhanced by a factor of two by resorting to a sample preparation method that employs a biphasic system made of H2O or D2O at the top of another layer of CDCl3. By using the biphasic system of two immiscible solvents, the analyte can be concentrated in the CDCl3 layer (within the more sensitive volume of the NMR coil), resulting in the improvement of the signal to noise ratio (SNR) by a factor of up to 1.8 for 13C and 2D 1H-13C HSQC spectra, which results in more than two-fold reduction in the experimental time. 1H NMR and other 2D NMR also get a sensitivity boost. The amount of CDCl3 required for sample preparation can also be reduced by 40% using this biphasic system (CDCl3/H2O). Sample preparation in such an immiscible biphasic system is effortless and straightforward. The performance of such biphasic samples is closer to that of Shigemi tubes and better than that of 3 mm o.d. tubes.


Assuntos
Imageamento por Ressonância Magnética , Compostos Orgânicos , Espectroscopia de Ressonância Magnética , Razão Sinal-Ruído , Solventes
7.
Biochem Biophys Rep ; 28: 101110, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34485711

RESUMO

Pesticides entering our body, either directly or indirectly, are known to increase the risk of developing neurodegenerative disorders. The pesticide-induced animal models of Parkinson's disease and Alzheimer's disease recapitulates many of the pathologies seen in human patients and have become popular models for studying disease biology. However, the specific effect of pesticides at the cellular and molecular levels is yet to be fully established. Here we investigated the cellular effect of three commonly used pesticides: DEET, fipronil and maneb. Specifically, we looked at the effect of these pesticides in the formation of stress granules and the concomitant translational arrest in a neuronal cell line. Stress granules represent an ensemble of non-translating mRNAs and appear in cells under physiological stress. Growing evidence indicates that chronic stress may covert the transient stress granules into amyloids and may thus induce neurodegeneration. We demonstrate here that all three pesticides tested induce stress granules and translation arrest through the inactivation of the eukaryotic initiation factor, eIF2α. We also show that oxidative stress could be one of the major intermediary factors in the pesticide-induced stress granule formation and that it is a reversible process. Our results suggest that prolonged pesticide exposure may result in long-lived stress granules, thus compromising the neuronal stress response pathway and leading to neurodegeneration.

8.
ACS Chem Neurosci ; 10(9): 3969-3985, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31460743

RESUMO

Huntington's disease (HD) is a genetic disorder caused by a CAG expansion mutation in the huntingtin gene leading to polyglutamine (polyQ) expansion in the N-terminal part of huntingtin (Httex1). Expanded polyQ, through a complex aggregation pathway, forms aggregates in neurons and presents a potential therapeutic target. Here we show Httex1 aggregation suppression by arginine and arginine ethyl ester (AEE) in vitro, as well as in yeast and mammalian cell models of HD, bearing expanded polyQ. These molecules also rescue locomotion dysfunction in HD Drosophila model. Both molecules alter the hydrogen bonding network of polyQ to enhance its aqueous solubility and delay aggregation. AEE shows direct binding with the NT17 part of Httex1 to induce structural changes to impart an enhanced inhibitory effect. This study provides a platform for the development of better arginine based therapeutic molecules against polyQ-rich Httex1 aggregation.


Assuntos
Arginina/análogos & derivados , Descoberta de Drogas/métodos , Proteína Huntingtina/antagonistas & inibidores , Proteína Huntingtina/genética , Peptídeos/antagonistas & inibidores , Agregados Proteicos/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Arginina/química , Arginina/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Drosophila , Proteína Huntingtina/química , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Agregados Proteicos/fisiologia , Conformação Proteica/efeitos dos fármacos
9.
Magn Reson Chem ; 57(6): 304-316, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30762898

RESUMO

NMR is a fast method for obtaining a holistic snapshot of the metabolome and also offers quantitative information without separating the compounds present in a complex mixture. Identification of the metabolites present in a plant extract sample is a crucial step for all plant metabolomics studies. In the present work, we used various two dimensional (2D) NMR methods such as J-resolved NMR, total correlation spectroscopy (TOCSY), and heteronuclear single quantum coherence sensitivity enhanced NMR spectroscopy for the identification of 36 common metabolites present in Coriandrum sativum L. seed extract. The identified metabolites belong to the following classes: organic acids, amino acids, and carbohydrates. 1 H NMR spectra of such complex mixtures in general display tremendous signal overlap due to the presence of a large number of metabolites with closely resonating multiplet signals. This signal overlapping leads to ambiguity in an assignment, and hence, identification of metabolites becomes tedious or impossible in many cases. Therefore, the utility of pure-shift proton spectrum along the indirect (F1 ) dimension of the F1 -PSYCHE-TOCSY spectrum is demonstrated for overcoming ambiguity in assignment of metabolites in crowded spectral regions from Coriandrum sativum L. seed extract sample. Because pure-shift NMR methods yield ultrahigh resolution spectrum (i.e., a singlet peak per chemical site) along one or more dimensions, such spectra provide better identification of metabolites compared with regular 2D TOCSY where signal overlap and peak distortions lead to ambiguity in the assignment. Nine metabolites were unambiguously assigned by pure-shift F1 -PSYCHE-TOCSY spectrum, which was unresolved in regular TOCSY spectrum.


Assuntos
Coriandrum/química , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Extratos Vegetais/química , Sementes/química , Coriandrum/metabolismo , Sementes/metabolismo
10.
J Biosci ; 43(4): 817, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30207324

RESUMO

Correction to: J. Biosci. 40(5), December 2015, 863-871 https://doi.org/10.1007/s12038-015-9570-0 The image of anti-Myc blot of figure 2C (third panel; Malin-Myc [C26S]) was inadvertently used once again for the c-tubulin loading control of figure 2B. The revised figure 2B with the correct image of the c-tubulin loading control is given below. The interpretation and conclusion provided in the article do not change because of the correction.

11.
J Genet ; 97(3): 611-624, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30027899

RESUMO

The progressive myoclonic epilepsy of Lafora or Lafora disease (LD) is a neurodegenerative disorder characterized by recurrent seizures and cognitive deficits. With typical onset in the late childhood or early adolescence, the patients show progressive worsening of the disease symptoms, leading to death in about 10 years. It is an autosomal recessive disorder caused by the loss-of-function mutations in the EPM2A gene, coding for a protein phosphatase (laforin) or the NHLRC1 gene coding for an E3 ubiquitin ligase (malin). LD is characterized by the presence of abnormally branched water insoluble glycogen inclusions known as Lafora bodies in the neurons and other tissues, suggesting a role for laforin and malin in glycogen metabolic pathways. Mouse models of LD, developed by targeted disruption of the Epm2a or Nhlrc1 gene, recapitulated most of the symptoms and pathological features as seen in humans, and have offered insight into the pathomechanisms. Besides the formation of Lafora bodies in the neurons in the presymptomatic stage, the animal models have also demonstrated perturbations in the proteolytic pathways, such as ubiquitin proteasome system and autophagy, and inflammatory response. This review attempts to provide a comprehensive coverage on the genetic defects leading to the LD in humans, on the functional properties of the laforin and malin proteins, and on how defects in any one of these two proteins result in a clinically similar phenotype. We also discuss the disease pathologies as revealed by the studies on the animal models and, finally, on the progress with therapeutic attempts albeit in the animal models.


Assuntos
Doença de Lafora/genética , Animais , Modelos Animais de Doenças , Heterogeneidade Genética , Genótipo , Humanos , Doença de Lafora/patologia , Doença de Lafora/terapia , Fenótipo
12.
Chemphyschem ; 18(21): 3076-3082, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-28833930

RESUMO

A diagonal suppressed F1 decoupled total correlation spectroscopy(TOCSY) experiment is developed for analyses of complex mixtures. In 2D homonuclear correlation, assignment of the cross peaks is crucial for structure elucidation. However, when cross peaks are close to the diagonal peaks in overcrowded spectral regions, their assignment becomes tedious. In complex mixtures, the presence of multiple spectra along with broad and complex proton multiplets owing to homonuclear scalar couplings degrade the resolution to the extent that assignment of various cross peaks becomes tedious or impossible. Herein, a diagonal suppressed total correlation technique with F1 decoupling is presented to improve the resolution of the cross peaks. The resolution of the cross peaks is improved by both diagonal suppression as well as the collapse of the multiplets to singlets. Application of the method to a few mixtures of organic compounds reveals better identification of the cross peaks relative to other TOCSY variants.

13.
J Genet ; 95(3): 481-3, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27659318
14.
J Cell Sci ; 129(19): 3541-3552, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528402

RESUMO

The heat shock response is a conserved defense mechanism that protects cells from physiological stress, including thermal stress. Besides the activation of heat-shock-protein genes, the heat shock response is also known to bring about global suppression of transcription; however, the mechanism by which this occurs is poorly understood. One of the intriguing aspects of the heat shock response in human cells is the transcription of satellite-III (Sat3) long non-coding RNAs and their association with nuclear stress bodies (nSBs) of unknown function. Besides association with the Sat3 transcript, the nSBs are also known to recruit the transcription factors HSF1 and CREBBP, and several RNA-binding proteins, including the splicing factor SRSF1. We demonstrate here that the recruitment of CREBBP and SRSF1 to nSBs is Sat3-dependent, and that loss of Sat3 transcripts relieves the heat-shock-induced transcriptional repression of a few target genes. Conversely, forced expression of Sat3 transcripts results in the formation of nSBs and transcriptional repression even without a heat shock. Our results thus provide a novel insight into the regulatory role for the Sat3 transcripts in heat-shock-dependent transcriptional repression.


Assuntos
Resposta ao Choque Térmico/genética , RNA não Traduzido/metabolismo , Transcrição Gênica , Proteína de Ligação a CREB/metabolismo , Morte Celular , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Modelos Biológicos , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Estresse Fisiológico
15.
J Biosci ; 40(5): 863-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26648032

RESUMO

Lafora disease (LD), an autosomal recessive and fatal form of neurodegenerative disorder, is characterized by the presence of polyglucosan inclusions in the affected tissues including the brain. LD can be caused by defects either in the EPM2A gene coding for the laforin protein phosphatase or the NHLRC1 gene coding for the malin ubiquitin ligase. Since the clinical symptoms of LD patients representing the two genetic groups are very similar and since malin is known to interact with laforin, we were curious to examine the possibility that the two proteins regulate each other's function. Using cell biological assays we demonstrate here that (i) malin promotes its own degradation via autoubiquitination, (ii) laforin prevents the auto-degradation of malin by presenting itself as a substrate and (iii) malin preferentially degrades the phosphatase-inactive laforin monomer. Our results that laforin and malin regulate each other's stability and activity offers a novel and attractive model to explain the molecular basis of locus heterogeneity observed in LD.


Assuntos
Proteínas de Transporte/metabolismo , Doença de Lafora/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Humanos , Doença de Lafora/genética , Estabilidade Proteica , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação
17.
J Biol Chem ; 289(19): 13543-53, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24648514

RESUMO

O-GlcNAcylation is an important post-translational modification of proteins and is known to regulate a number of pathways involved in cellular homeostasis. This involves dynamic and reversible modification of serine/threonine residues of different cellular proteins catalyzed by O-linked N-acetylglucosaminyltransferase and O-linked N-acetylglucosaminidase in an antagonistic manner. We report here that decreasing O-GlcNAcylation enhances the viability of neuronal cells expressing polyglutamine-expanded huntingtin exon 1 protein fragment (mHtt). We further show that O-GlcNAcylation regulates the basal autophagic process and that suppression of O-GlcNAcylation significantly increases autophagic flux by enhancing the fusion of autophagosome with lysosome. This regulation considerably reduces toxic mHtt aggregates in eye imaginal discs and partially restores rhabdomere morphology and vision in a fly model for Huntington disease. This study is significant in unraveling O-GlcNAcylation-dependent regulation of an autophagic process in mediating mHtt toxicity. Therefore, targeting the autophagic process through the suppression of O-GlcNAcylation may prove to be an important therapeutic approach in Huntington disease.


Assuntos
Autofagia , Citotoxinas/metabolismo , Doença de Huntington/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Acilação , Animais , Citotoxinas/genética , Modelos Animais de Doenças , Proteínas de Drosophila , Drosophila melanogaster , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Discos Imaginais/metabolismo , Discos Imaginais/patologia , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Neurônios/patologia
18.
J Hum Genet ; 58(9): 573-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23884151

RESUMO

The voltage-gated sodium channels are fundamental units that evoke the action potential in excitable cells such as neurons. These channels are integral membrane proteins typically consisting of one α-subunit, which forms the larger central pore of the channel, and two smaller auxiliary ß-subunits, which modulate the channel functions. Genetic alterations in the SCN1A gene coding for the α-subunit of the neuronal voltage-gated sodium ion channel, type 1 (NaV 1.1), is associated with a spectrum of seizure-related disorders in human, ranging from a relatively milder form of febrile seizures to a more severe epileptic condition known as the Dravet syndrome. Among the epilepsy genes, the SCN1A gene perhaps known to have the largest number of disease-associated alleles. Here we present a meta-analysis on the SCN1A gene variants and provide comprehensive information on epilepsy-associated gene variants, their frequency, the predicted effect on the protein, the ethnicity of the affected along with the inheritance pattern and the associated epileptic phenotype. We also summarize our current understanding on the pathophysiology of the SCN1A gene defects, disease mechanism, genetic modifiers and their clinical and diagnostic relevance.


Assuntos
Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Animais , Modelos Animais de Doenças , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/etnologia , Epilepsias Mioclônicas/fisiopatologia , Estudos de Associação Genética , Variação Genética/fisiologia , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/química , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo
19.
Inorg Chem ; 51(16): 8664-6, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22867034

RESUMO

A new water-soluble, multisite-coordinating ligand LH(7) was prepared by the condensation of tris(hydroxymethyl)aminomethane with 2,6-diformyl-p-cresol. LH(7) is a selective chemosensor for Cu(2+), under physiological conditions, with visual detection limits of 20 ppm (ambient light conditions) and 4 ppm (UV light conditions). LH(7) can also be used in biological cell lines for the detection of Cu(2+).


Assuntos
Complexos de Coordenação/química , Cobre/análise , Cresóis/química , Trometamina/química , Animais , Células COS , Chlorocebus aethiops , Cobre/química , Corantes Fluorescentes , Ligantes , Luz , Microscopia de Fluorescência , Imagem Molecular , Sensibilidade e Especificidade , Soluções , Espectrometria de Fluorescência , Água
20.
Genomics ; 99(1): 36-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22036712

RESUMO

The EPM2A gene, defective in the fatal neurodegenerative disorder Lafora disease (LD), is known to encode two distinct proteins by differential splicing; a phosphatase active cytoplasmic isoform and a phosphatase inactive nuclear isoform. We report here the identification of three novel EPM2A splice variants with potential to code for five distinct proteins in alternate reading frames. These novel isoforms, when ectopically expressed in cell lines, show distinct subcellular localization, interact with and serve as substrates of malin ubiquitin ligase-the second protein defective in LD. Two phosphatase active isoforms interact to form a heterodimeric complex that is inactive as a phosphatase in vitro, suggesting an antagonistic function for laforin isoforms if expressed endogenously in significant amounts in human tissues. Thus alternative splicing could possibly be one of the mechanisms by which EPM2A may regulate the cellular functions of the proteins it codes for.


Assuntos
Processamento Alternativo , Doença de Lafora/genética , Mutação , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Dimerização , Glicogênio/metabolismo , Humanos , Isoenzimas/genética , Camundongos , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...